Conductivity

Purpose

To demonstrate the conductivity of a variety of substances in solution. To classify substances as weak, strong or nonelectrolytes.

Materials

Conductivity apparatus	NaCl
Small beakers	Glacial acetic acid
Distilled water/wash bottle	1 M HC ₂ H ₃ O ₂
Sugar	1 M HCl

Procedure

- 1. Place distilled water in a beaker. Ask for prediction of conductivity. Test with apparatus.
- 2. Place tap water in a beaker. Test for conductivity.
- 3. Add sugar to distilled water. Test for conductivity.
- 4. Begin with new beaker of distilled water. Add NaCl. Test.
- 5. Test beaker of the acids in this order
 - a) HCl
 - b) 1 M HC₂H₃O₂
 - c) Glacial acetic acid
- 6. Dilute glacial acetic acid by half (double the volume). Test conductivity.
- 7. Repeat step 6. Test conductivity.

Additional Information

- 1. Be sure to clean electrodes well in distilled water between tests.
- 2. Be careful with electrodes shock hazard!!!

Questions for the Students

1. Why doesn't distilled water conduct electricity?

- 2. Why does tap water conduct?
- 3. What must be present for conductivity to occur?
- 4. Why is 1 M HCl such a strong electrolyte? Draw a molecular picture.
- 5. Why is 1 M HC₂H₃O₂ a weak electrolyte? Draw a molecular picture. How is it different from HCl?
- 6. Why is glacial acetic acid a nonelectrolyte?
- 7. Why does it begin to conduct when we add distilled water?

Disposal

Solutions can be poured down the drain with excess water.

Reference

University of Illinois, Urbana-Champaign.